Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.451
Filtrar
1.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581348

RESUMEN

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Asunto(s)
Aminoácidos de Cadena Ramificada , Dieta Alta en Grasa , Imiquimod , Inflamación , Ratones Endogámicos C57BL , Obesidad , Psoriasis , Animales , Psoriasis/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Obesidad/metabolismo , Obesidad/complicaciones , Dieta Alta en Grasa/efectos adversos , Masculino , Inflamación/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Ratones , PPAR gamma/metabolismo , PPAR gamma/genética , Modelos Animales de Enfermedad , Ratones Obesos , Transducción de Señal , Transaminasas/metabolismo , Piel/metabolismo
2.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38632902

RESUMEN

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Asunto(s)
Disulfuros , Estrés Oxidativo , PPAR gamma , Tirosina/análogos & derivados , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Animales , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Neuronas/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Poríferos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Glutatión/metabolismo , Alcaloides/farmacología , Alcaloides/química , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
3.
Oncol Rep ; 51(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38624012

RESUMEN

Prostate cancer (PCa) is one the most common malignancies in men. The high incidence of bone metastasis years after primary therapy suggests that disseminated tumor cells must become dormant, but maintain their ability to proliferate in the bone marrow. Abscisic acid (ABA) is a stress response molecule best known for its regulation of seed germination, stomal opening, root shoot growth and other stress responses in plants. ABA is also synthesized by mammalian cells and has been linked to human disease. The aim of the present study was to examine the role of ABA in regulating tumor dormancy via signaling through lanthionine synthetase C­like protein 2 (LANCL2) and peroxisome proliferator activated receptor γ (PPARγ) receptors. ABA signaling in human PCa cell lines was studied using targeted gene knockdown (KD), western blotting, quantitative PCR, cell proliferation, migration, invasion and soft agar assays, as well as co­culture assays with bone marrow stromal cells. The data demonstrated that ABA signaling increased the expression of p21, p27 and p16, while inhibiting viability, migration, invasion and colony size in a reversable manner without toxicity. ABA also induced p38MAPK activation and NR2F1 signaling. Targeted gene KD of LANCL2 and PPARγ abrogated the cellular responses to ABA. Taken together, these data demonstrate that ABA may induce dormancy in PCa cell lines through LANCL2 and PPARγ signaling, and suggest novel targets to manage metastatic PCa growth.


Asunto(s)
Ácido Abscísico , Neoplasias de la Próstata , Humanos , Masculino , Ácido Abscísico/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de Unión a Fosfato/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Neoplasias de la Próstata/genética , Semillas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos
4.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559696

RESUMEN

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Asunto(s)
Hippophae , Morus , Ratas , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Hippophae/metabolismo , Morus/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Transducción de Señal , Pérdida de Peso
5.
Chin J Nat Med ; 22(4): 307-317, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658094

RESUMEN

Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellariabaicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg-1, i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.


Asunto(s)
Colitis , Sulfato de Dextran , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , PPAR gamma , Especies Reactivas de Oxígeno , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Masculino , Humanos , Sustancias Protectoras/farmacología
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 610-616, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660874

RESUMEN

OBJECTIVE: To systematically screen and identify long noncoding RNA (lncRNA) associated with bone marrow adiposity changes in aplastic anemia (AA). METHODS: The PPARγ and C/EBPα ChIP-Seq data in ChIPBase was analyzed by bioinformatics and the potential lncRNA co-transcriptionally regulated by PPARγ and C/EBPα was screened. The expression of candidate lncRNA was verified by qRT-PCR in the in vitro adipogenic differentiation model of BM-MSC, BM-MSC infected with lenti-shPPARγ and lenti-shC/EBPα as well as clinical BM-MSC samples derived from AA and controls. RESULTS: PPARγ and C/EBPα were significantly highly expressed in AA BM-MSC, and knock-down of PPARγ and C/EBPα impaired the adipogenic capacity of AA BM-MSC. PPARγ and C/EBPα cotranscriptionally activate LINC01230 promoter activity in binding sites dependant manner. The LINC01230 was also aberrantly highly expressed in AA BM-MSC compared with controls. CONCLUSION: PPARγ and C/EBPα are aberrantly expressed in AA BM-MSC and may promote the adipogenic differentiation of AA BM-MSC, and to a certain extent mediate the bone marrow adiposity alteration by transcriptionally activating LINC01230 expression.


Asunto(s)
Anemia Aplásica , Médula Ósea , PPAR gamma , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Anemia Aplásica/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Médula Ósea/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Adipogénesis , Adiposidad , Células de la Médula Ósea
7.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661048

RESUMEN

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , PPAR gamma , Rosiglitazona , Trasplante Autólogo , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Rosiglitazona/farmacología , Masculino , Diferenciación Celular , Adipogénesis , Adipocitos/metabolismo , Ratones , Ratas
8.
PLoS One ; 19(4): e0301990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625851

RESUMEN

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Asunto(s)
Cardiolipinas , Sirtuina 3 , Animales , Ratones , Cardiolipinas/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Remodelación Ventricular
9.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632591

RESUMEN

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Asunto(s)
Adipogénesis , Interleucina-33 , Ratones , Animales , Adipogénesis/genética , Adipocitos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , beta Catenina/metabolismo , Diferenciación Celular , Obesidad/metabolismo , Vía de Señalización Wnt
10.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594496

RESUMEN

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Asunto(s)
Ferroptosis , Preeclampsia , Humanos , Femenino , Embarazo , Ratas , Animales , Rosiglitazona/farmacología , Rosiglitazona/metabolismo , PPAR gamma/metabolismo , Metabolismo de los Lípidos , Placenta/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/prevención & control , Preeclampsia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hipoxia/metabolismo , Lípidos
11.
BMC Vet Res ; 20(1): 88, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459489

RESUMEN

BACKGROUND: Strontium (Sr) has similar physicochemical properties as calcium (Ca) and is often used to evaluate the absorption of this mineral. Because the major route of Ca absorption in the bovine occurs in the rumen, it is essential to understand whether Sr impacts the ruminal epithelial cells and to what extent. RESULTS: In the present study, RNA sequencing and assembled transcriptome assembly were used to identify transcription factors (TFs), screening and bioinformatics analysis in bovine ruminal epithelial cells treated with Sr. A total of 1405 TFs were identified and classified into 64 families based on an alignment of conserved domains. A total of 174 differently expressed TFs (DE-TFs) were increased and 52 DE-TFs were decreased; the biological process-epithelial cell differentiation was inhibited according to the GSEA-GO analysis of TFs; The GO analysis of DE-TFs was enriched in the DNA binding. Protein-protein interaction network (PPI) found 12 hubs, including SMAD4, SMAD2, SMAD3, SP1, GATA2, NR3C1, PPARG, FOXO1, MEF2A, NCOA2, LEF1, and ETS1, which verified genes expression levels by real-time PCR. CONCLUSIONS: In this study, SMAD2, PPARG, LEF1, ETS1, GATA2, MEF2A, and NCOA2 are potential candidates that could be targeted by Sr to mediate cell proliferation and differentiation, as well as lipid metabolism. Hence, these results enhance the comprehension of Sr in the regulation of transcription factors and provide new insight into the study of Sr biological function in ruminant animals.


Asunto(s)
Estroncio , Factores de Transcripción , Humanos , Bovinos , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estroncio/farmacología , Estroncio/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Perfilación de la Expresión Génica/veterinaria , Células Epiteliales/metabolismo , Transcriptoma , Calcio/metabolismo
12.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468335

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Asunto(s)
Aterosclerosis , Flavonas , PPAR gamma , Animales , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacología , Antígenos CD36/genética , Antígenos CD36/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474201

RESUMEN

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienoles , Humanos , Ratones , Ratas , Animales , Tocotrienoles/metabolismo , Pez Cebra/metabolismo , Dieta Alta en Grasa , Hiperlipidemias/metabolismo , Aceite de Salvado de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474216

RESUMEN

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Asunto(s)
Adipogénesis , Metabolismo de los Lípidos , Ratones , Animales , Adipogénesis/genética , Obesidad/metabolismo , Hipertrofia , Lípidos/farmacología , Estrés Oxidativo , Células 3T3-L1 , PPAR gamma/metabolismo
15.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493696

RESUMEN

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bleomicina/efectos adversos , Hemo-Oxigenasa 1/metabolismo , Antioxidantes/farmacología , beta Catenina/metabolismo , PPAR gamma/metabolismo , Óxido Nítrico/metabolismo , Pulmón/patología , Fibrosis , Arginina/uso terapéutico
16.
Int Immunopharmacol ; 131: 111898, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513573

RESUMEN

Vancomycin (VCM) is the first-line antibiotic for severe infections, but nephrotoxicity limits its use. Leonurine (Leo) has shown protective effects against kidney damage. However, the effect and mechanism of Leo on VCM nephrotoxicity remain unclear. In this study, mice and HK-2 cells exposed to VCM were treated with Leo. Biochemical and pathological analysis and fluorescence probe methods were performed to examine the role of Leo in VCM nephrotoxicity. Immunohistochemistry, q-PCR, western blot, FACS, and Autodock software were used to verify the mechanism. The present results indicate that Leo significantly alleviates VCM-induced renal injury, morphological damage, and oxidative stress. Increased intracellular and mitochondrial ROS in HK-2 cells and decreased mitochondrial numbers in mouse renal tubular epithelial cells were reversed in Leo-administrated groups. In addition, molecular docking analysis using Autodock software revealed that Leo binds to the PPARγ protein with high affinity. Mechanistic exploration indicated that Leo inhibited VCM nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α inflammation pathway. Taken together, our results indicate that the PPARγ inhibition and inflammation reactions were implicated in the VCM nephrotoxicity and provide a promising therapeutic strategy for renal injury.


Asunto(s)
Ácido Gálico/análogos & derivados , Insuficiencia Renal , Vancomicina , Ratones , Animales , Vancomicina/metabolismo , Vancomicina/farmacología , Vancomicina/uso terapéutico , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , PPAR gamma/metabolismo , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Riñón/patología , Insuficiencia Renal/metabolismo , Inflamación/tratamiento farmacológico
17.
Eur J Med Chem ; 269: 116325, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527378

RESUMEN

By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.


Asunto(s)
PPAR gamma , Clorhidrato de Raloxifeno , Tiofenos , Ratones , Animales , PPAR gamma/metabolismo , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos
18.
Eur J Med Chem ; 269: 116279, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460271

RESUMEN

In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARÉ£ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARÉ£ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARÉ£ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARÉ£ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARÉ£ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARÉ£ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARÉ£ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARÉ£ binding site.


Asunto(s)
Bencenosulfonamidas , Diabetes Mellitus Tipo 2 , Ratas , Animales , Pioglitazona/farmacología , PPAR gamma/metabolismo , Simulación del Acoplamiento Molecular , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología
19.
Nutrients ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542756

RESUMEN

Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via experiments conducted in both in vitro and in vivo obesity models. In in vitro experiments conducted in a controlled environment, the application of BJE demonstrated the ability to suppress the accumulation of lipids induced by MDI in 3T3-L1 adipocytes. Additionally, it downregulated adipogenic-related proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), adipocyte protein 2 (aP2), and lipid synthesis-related protein acetyl-CoA carboxylase (ACC). It also upregulated the heat generation protein peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and fatty acid oxidation protein carnitine palmitoyltransferase-1 (CPT-1). The oral administration of BJE decreased body weight, alleviated liver damage, and inhibited the accumulation of lipids in mice with diet-induced obesity resulting from a high-fat diet. The inhibition of lipid accumulation by BJE in vivo was associated with a decreased expression of adipogenic and lipid synthesis proteins and an increased expression of heat generation and fatty acid oxidation proteins. BJE administration improved obesity by decreasing adipogenesis and activating heat generation and fatty acid oxidation in 3T3-L1 cells and in HFD-induced obese C57BL/6J mice. These results suggest that BJE shows potential as a natural method for preventing metabolic diseases associated with obesity.


Asunto(s)
Fármacos Antiobesidad , Planta de la Mostaza , Ratones , Animales , Células 3T3-L1 , Planta de la Mostaza/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ratones Obesos , Fármacos Antiobesidad/uso terapéutico , Obesidad/metabolismo , Adipogénesis , Lípidos/farmacología , Ácidos Grasos/farmacología , PPAR gamma/metabolismo
20.
Physiol Res ; 73(1): 105-115, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466009

RESUMEN

Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise). Following the experimental period, bilateral soleus muscles were collected and analyzed. Atrogin-1 and Muscle RING finger 1 (MuRF-1) mRNA expression levels were significantly higher for the experimental groups than for the control group but were significantly lower for the HF group than for the Im group. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNA and protein expression levels in the HF group were significantly higher than those in the Im group, with no significant differences compared to the Con group. Both the Forkhead box O (FoxO)/phosphorylated FoxO and protein kinase B (AKT)/phosphorylated AKT ratios were significantly lower for the Im group than for the control group and significantly higher for the HF group than for the Im group. These results, the suppression of atrogin-1 and MuRF-1 expression for the HF group may be due to decreased nuclear expression of FoxO by AKT phosphorylation and suppression of FoxO transcriptional activity by PGC-1alpha. Furthermore, the number of muscle contractions might be important for effective EMS.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , PPAR gamma/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , ARN Mensajero/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA